人工智能原理 Artificial Intelligence

● 教师介绍 Faculty

Hongguang LI(李宏光)

Professor, PhD

Affiliation: College of Information Science and Technology

Work Phone: +86-10-64434797 E-mail: lihg@mail.buct.edu.cn

Research Fields: Modeling, control and optimization for industrial systems;

Computer based intelligent control for industrial systems

Education

February, 2001---June, 2004:

East China University of Science and Technology

PhD in Control Science and Engineering

September, 1985---June, 1988:

East China University of Science and Technology

MS in Control Science and Engineering

September, 1980---June, 1984:

Hebei University of Science and Technology

BS in Control Science and Engineering

Work Experience

June, 2002--- present: Professor

College of Information Science and Technology, Beijing University of Chemical Technology

February, 2009 --- February, 2010: Visiting scholar

Department of Chemical Engineering, Carnegie Mellon University

October, 1996--- May, 2002: Associate professor

College of Information Science and Technology, Beijing University of Chemical Technology

July, 1987--- September, 1996: Lecturer

College of Information Science and Technology, Beijing University of Chemical Technology

Representative Publications

- Bo Yang, Jun-jie Li, Chu Qi, <u>Hong-guang Li</u>*, Ya-dong He. Novel Correlation Analysis of Alarms Based on Block Matching Similarities. *Industrial & Engineering Chemistry Research*, 58, 2019: 9465-9472
- Yongjian Wang, Jingwen Huang, Chong Su, <u>Hongguang Li</u>*. Furnace themal efficiency modeling using an improved convolution neural network based on parameter-adaptive mnemonic enhancement optimization. *Applied Thermal Engineering*, 149, 2019: 332-343
- Bo Yang, He Li, <u>Hongguang Li</u>*. Multilayer Process Goose Queue (PGQ) Formation Adjustment Approaches based on Model-free Adaptive Control Strategies. Transactions of the Institute of Measurement and Control, 41(1), 2019: 45-54
- Chong Su, Yue Gao, Bingxu Jiang, <u>Hongguang Li</u>*. An Affective Cognition based Approach to Multi-attribute Group Decision Making. *Journal of intelligent & Fuzzy Systems*, 35(1), 2018: 11-33
- Yongjian Wang, <u>Hongguang Li</u>*. A novel intelligent modeling framework integrating convolutional neural network with an adaptive time-series window and its application to industrial process operational optimization. *Chemometrics and Intelligent Laboratory Systems*, 179, 2018: 64-72
- Kashada Abubaker, <u>Li Hongguang</u>*, Koshadah Osama. Analysis approach to identify factors influence digital learning technology adoption and utilization in developing countries. *International Journal of Emerging Technologies in Learning*, 13(2), 2018: 48-59
- Bo Yang, <u>Hongguang Li</u>*. A novel convolutional neural network based approach to predictions of process dynamic time delay sequences. *Chemometrics and Intelligent Laboratory Systems*, 174, 2018: 56-61
- Bo Yang, <u>Hongguang Li</u>. A novel dynamic timed fuzzy Petri nets modeling method with applications to industrial processes. *Expert Systems with Applications*, 97, 2018: 276-289
- Chong Su, Yue Gao, Yuxiao Xie, Yong Xue, Lijun Ge, <u>Hongguang Li</u>. A hybrid classifier based on nonlinear-PCA and deep belief networks with applications in dysphagia diagnosis. *Computer Assisted Surgery*, 22(s1), 2017: 135-147
- Bo Yang, <u>Hongguang Li</u>*. A similarity elastic window based approach to process dynamic time delay analysis, *Chemometrics and Intelligent Laboratory Systems*, 170, 2017; 13-24
- 11. Bo Yang, <u>Hongguang Li</u>*. A dynamic time delay analysis approach for correlated process variables, *Chemical Engineering Research and Design*, 122, 2017:141-150
- Jia Wang, <u>Hongguang Li</u>*, Jingwen Huang, Chong Su. Association rules mining based analysis of consequential alarm sequences in chemical processes. *Journal of Loss Prevention in the Process Industries*, 41, 2016:178-185
- Su Chong, <u>Li Hongguang</u>*, Huang Jingwen, Bao Xianyu. Generating methods for group affective Preferences with Engineering Applications. *The Arabian Journal for Science and Engineering*, 40(6), 2015: 1539-1551
- Jia Wang, <u>Hongguang Li</u>, Jinwen Huang, Chong Su. A data similarity based analysis to consequential alarms of industrial processes. *Journal of Loss Prevention in the Process Industries*, 35, 2015; 29-34
- 15. Chong Su, Hongguang Li*. A novel interactive preferential evolutionary method for

- controller tuning in chemical processes. *Chinese Journal of Chemical Engineering*, 23(2), 2015: 398-411
- Wen Bo, <u>Li Hongguang</u>*. A PLMF-based decomposition-coordination algorithm for fuzzy linear programming in industrial applications. The Arabian Journal for Science and Engineering, 39(10), 2014: 7467-7474
- Zang Hao, <u>Li Hongquang</u>*. Optimization of process alarm thresholds: a multi-dimensional kernel density estimation approach. *Process Safety Progress*, 33(3), 2014; 292-298
- Hao Zang, <u>Hongguang Li</u>*, Huang Jingwen, Wang Jia. A composite model predictive control strategy for furnaces. *Chinese Journal of Chemical Engineering*, 22(7), 2014: 788-794
- Bo Wen, <u>Hongguang Li</u>*. An approach to formulation of FNLP with complex piecewise linear membership functions. *Chinese Journal of Chemical Engineering*, 22(4), 2014; 411-417

● 课程介绍 About Course

This course will comprehensively introduce the theories and techniques of artificial intelligence. The course covers concepts of AI, problem-solving, logic and reasoning, fuzzy systems, artificial neural networks, rule-based expert systems, machine learning, evolutionary computations, respectively.

Outlines:

- 1. Introduction (4 hours)
- 2. Problem-solving (4 hours)
- 3. Logics with Programming (4 hours)
- 4. Fuzzy Systems (4 hours)
- 5. Artificial Neural Networks (4 hours)
- 6. Rule-based Expert Systems (4 hours)
- 7. Machine Learning (4 hours)
- 8. Evolutionary Computations (4 hours)

● 课程大纲 Syllabus

Instructor: Li Hongguang

Hours: 32 Credits: 2.0

Prerequisites: Computer Technologies

Descriptions: This course will comprehensively introduce the theories and techniques of artificial intelligence. The course covers concepts of AI, problem-solving, logic and reasoning, fuzzy systems, artificial neural networks, rule-based expert systems, machine learning, evolutionary computations, respectively.

References:

- [1] Stuart J. Russell, Artificial Intelligence: A modern Approach, Third Edition, 2017
- [2] Michael Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, Second Edition, 2005

General Syllabus:

Chapter 1 Introduction (4 hours)

- 1. Course schedules
- 2. Al Concepts
- 3. The history of AI
- 4. Al Applications

Requirement: Knowing the research and application scope of artificial intelligence

Chapter 2 Problem-solving (4 hours)

- 1. Knowledge Basics
- 2. General Problem Solving
- 3. State-space Graphs & Searches
- 4. Problem Reductions
- 5. Intelligent Agents

Requirement: Knowing the fundamentals of problem-solving; mastering search methodologies and technologies

Homework: Exercise practice in searching approaches and knowledge representations

Chapter 3 Logics with Programming (4 hours)

- 1. Introduction
- 2. Propositional logic
- 3. Predicate logic
- 4. Al programming languages

Requirement: Mastering propositional logic and predicate logic; knowing AI programming languages

Homework: Exercise practice in logics and Al programming

Chapter 4 Fuzzy Systems (4 hours)

- 1. Introduction
- 2. Fuzzy sets
- 3. Fuzzy Relations
- 4. Fuzzy inference
- 5. Fuzzy Rule-bases

Requirement: Mastering the fuzzy sets along with the operations; mastering fuzzy rules and fuzzy inference

Homework: Exercise practice in fuzzy rules

Chapter 5 Artificial Neural Networks (4 hours)

- 1. Introduction
- 2. Feed-forward networks
- 3. Feed-back networks

Requirement: Mastering architectures, algorithms and applications of feed-forward and feed-back networks

Homework: Literature reports

Chapter 6 Rule-based Expert Systems (4 hours)

- 1. Introduction
- 2. ES architectures

- 3. Knowledge representations
- 4. Inference engines

Requirement: Mastering the architectures of expert systems, knowledge representations and

reference methodologies

Homework: Literature reports

Chapter 7 Machine Learning (4 hours)

- 1. Introduction
- 2. Learning from examples
- 3. Data mining

Requirement: Knowing the fundamental technologies of machine learning

Homework: Literature reports

Chapter 8 Evolutionary Computations (4 hours)

- 1. Introduction
- 2. Genetic Algorithms
- 3. Detailed GAs
- 4. Realizations of GAs
- 5. Extensions of Simple GA
- 6. GA Application Areas

Requirement: Knowing genetic algorithms

Homework: Realizations of GA

Exams (2 hours)

Grade Points: Final exam 60%, Homework + Seminars 40%.

教案 Teaching Plan

● 视频 Video